
User Modeling for a Personal Assistant

Ramanathan Guha
∗

Vineet Gupta Vivek Raghunathan Ramakrishnan Srikant

Google
Mountain View, CA, USA

{guha,vineet,vraghunathan,srikant}@google.com

ABSTRACT
We present a user modeling system that serves as the foun-
dation of a personal assistant. The system ingests web
search history for signed-in users, and identifies coherent
contexts that correspond to tasks, interests, and habits. Un-
like past work which focused on either in-session tasks or
tasks over a few days, we look at several months of his-
tory in order to identify not just short-term tasks, but also
long-term interests and habits. The features we use for iden-
tifying coherent contexts yield substantially higher precision
and recall than past work. We also present an algorithm for
identifying contexts that is 8 to 30 times faster than previous
algorithms. The user modeling system has been deployed in
production. It runs over hundreds of millions of users, and
updates the models with a 10-minute latency. The contexts
identified by the system serve as the foundation for gener-
ating recommendations in Google Now.

1. INTRODUCTION
During the last two decades, web search has become the

most widely used method for answering information needs.
Over this period, search engines have become increasingly
sophisticated at finding and ranking search results. While
this model for answering information needs has been ex-
tremely successful, there are some limitations:

• Mobile device usage has exploded in the last five years.
Typing a search query on a smartphone is very slow
compared to a desktop. A system that automatically
shows the right information at the right time would
provide a dramatically better user experience on the
phone.

• For topics the user is interested in, the user needs to re-
peatedly query the search engine to determine whether
there is interesting fresh content. If such content ap-
pears only occasionally, the user is destined to either
be disappointed with most searches not returning any-

∗Authors are listed alphabetically.

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
WSDM’15, February 2–6, 2015, Shanghai, China.
Copyright 2015 ACM 978-1-4503-3317-7/15/02 ...$15.00.
http://dx.doi.org/10.1145/2684822.2685309.

thing new, or miss interesting fresh content with high
probability.

• Search engines are only mildly personalized. Interac-
tions with search engines are often reminiscent of the
movie “50 First Dates”, in that the search engine ap-
pears to have forgotten all past interactions.

The last three years have seen the introduction of a new
category of mobile personal assistants, including Google Now
[1] and Cortana [2]. These assistants share the goal of show-
ing the user the right information at the right time, without
the user querying for information. The primary motivation
of this paper is to enable such personal assistants to address
the problems discussed above:

• Contextual assistance: The personal assistant should
be able to detect a change in the user context, and
make useful recommendations for that context. For
example, if a user is in a city away from home, the as-
sistant might show a personalized list of nearby restau-
rants and their reviews, without the user ever typing
a query.

• Interest updates: Users are often interested in cer-
tain topics, like a particular sports team, a celebrity,
or a favorite TV show. Personal assistants save users
the trouble of finding new information by automati-
cally alerting the user to any new piece of information
about their favorite topics.

• Fully personalized: The personal assistant utilizes
the user model to fully personalize the experience. For
example, when suggesting restaurants, in addition to
the spatio-temporal context, the assistant personalizes
the suggestions based on the user’s cuisine preferences
and price sensitivity.

We emphasize that such personal assistants (or discovery
engines) complement traditional search engines, and while
they may substantially reduce the need to use search engines
on a smartphone, are not replacements for a search engine.

The foundation for such a personal assistant is a user mod-
eling system that, given a sequence of user actions, identifies
coherent contexts. A context is a set of user actions cor-
responding to a single information need. Contexts include:

• Tasks: Tasks typically have a beginning and an end,
e.g., buying a camera or planning a trip to Paris. Tasks
can span multiple sessions, and some long-running tasks,
such as planning a wedding, may span weeks or months.

• Interests: Interests may span months or years, and
often do not have an end. Examples include following
sports teams, celebrities, or TV shows.

• Habits: These are actions that users take on a reg-
ular basis, e.g., reading a favorite blog or news site,
checking stock prices, or checking traffic in the daily
commute.

These contexts are annotated with context types, entities,
and names.

We have built a system, called Taba, comprised of two
parts:

1. An user modeling system that builds the user model
described above. The system scales to hundreds of
millions of users, and updates the user model within
10 minutes of a new user action.

2. A content recommendation system that does collabo-
rative filtering over contexts and users, and also pre-
dicts how interested the user will be in recommenda-
tions for the context.

In this paper, we focus on the user modeling system, and
motivate the user model by describing how the recommen-
dation system uses the contexts. Both these systems have
been deployed as part of Google Now, serving tens of mil-
lions of recommendations daily.

Paper Outline.
We discuss related work in Section 2. In Section 3, we

describe the features and algorithms for identifying tasks,
interests and habits from a user’s history. We evaluate our
user model in Section 4. In Section 5, we describe how
the user model serves as the foundation for prediction and
recommendation systems in Google Now. We conclude in
Section 6.

2. RELATED WORK
Early work on grouping search queries (e.g., [21]) focused

on sessions, defined purely by the temporal gap between
queries. Spink et al. [22] found that a large majority of
multiple-query sessions included multiple topics. Jones et
al. [12] showed that using query reformulation and query
words to identify topics yielded substantially higher accu-
racy than only using timeouts.

Subsequent work in this area can be split into two groups:
papers that focus on in-session tasks, and those that identify
cross-session tasks.

2.1 In-Session Tasks
Lucchese et al. [17] proposed techniques for identifying

“task-based sessions”: sets of possibly non-contiguous queries
within a session that correspond to a user task. They recog-
nized that standard clustering algorithms are too expensive,
and proposed a new clustering algorithm QCHTC , which
avoids computing the full similarity graph by just consid-
ering a cluster to be represented by the first and the last
queries in the session.

Li et al. [16] also consider in-session tasks. They use query
words, query co-occurrence, and the temporal sequence of
queries as their main signals. Their learning algorithm is
quadratic, but they have a linear approximation which works
well in practice. Hua et al. [10] showed the importance of
semantic features for in-session task identification.

User behavior within a session (typically 30 minutes) is
quite different from user behavior across months of history.
In-session tasks tend to be uniform and small, while long-
term tasks and interests tend to be diverse and large. Hence
intuitions that work well for in-session tasks do not always
scale to identifying coherent contexts across months of his-
tory. For example, representing contexts by the first and last
queries is reasonable for in-session tasks, but cannot capture
a context with hundreds of queries.

2.2 Cross-Session Tasks
Several papers have recently addressed the considerably

more challenging problem of identifying longer range tasks
across sessions. Kotov et al. [14] formulate the problem of
identifying cross-session tasks as follows: given a query, iden-
tify all related queries from previous sessions that are part
of the same task. Their main focus is trying to predict if
the task will be continued later, so they restrict themselves
to primarily syntactic features such as number of words the
queries have in common, edit distance between queries and
the time between queries. The authors continued their re-
search on task continuation in Agichtein et al. [3], and added
semantic features such as ODP categories, and demonstrated
that automated systems can significantly outperform human
raters on predicting task continuation.

Lucchese et al. [18, 19] have extended their work above
to cluster their already computed in-session tasks by using
clustering algorithms which produce a specified number of
clusters. They use average pairwise similarity to determine
the similarity between tasks. Their primary focus is clus-
tering in-session tasks across users, but they do use their
algorithm to produce cross-session task clusters for individ-
ual users.

Wang et al. [23] propose an algorithm for identifying cross-
session search tasks using a variety of signals. They built a
training set by completely annotating 5 days of query logs for
1436 users, and learned a latent structural SVM classifier to
compute the similarity between pairs of queries. Then they
use a bestlink clustering algorithm [11] to cluster queries
— each query is clustered with the most similar query that
occurred before it, as long as their similarity exceeded a
threshold.

2.3 Our Contributions
There are three main differences between our work and

prior work on in-session and cross-session tasks.

• We focus on user history over many months, often with
thousands of queries and clicks. This lets us identify
long-term interests and habits in addition to identify-
ing short-term tasks — identifying such contexts over
many months (versus short time spans) is critical for
the user model to be useful in a personal assistant (see
Section 5).

• We present a set of features that yield better preci-
sion/recall than past work [23] while simultaneously
being much faster to compute.

• Working over longer time spans means that O(n2) al-
gorithms do not scale. We present a near-linear seg-
mentation algorithm that is much faster than prior
work.

Finally, this is a production system running continuously
over hundreds of millions of users with a 10-minute turnaround

time for incorporating new user actions into the model. This
has implications for the design of features and algorithms,
as we will see in the rest of the paper.

3. USER MODELING

3.1 Problem Statement
The input to the user modeling system is a sequence of

observations from a single user. In this paper, an observa-
tion is a query together with its associated web results and
clicks. Conceptually, an observation could also be a video
watch, or a URL visited in a browser.

The output is a set of contexts, where a context is a se-
quence of observations that constitutes a single information
need.

In general, the definition of a single information need is
ambiguous, and in fact it can differ among users as well.
For a researcher in information retrieval, the queries “graph
clustering algorithms”and“synonyms in web search ranking”
may be part of different contexts about different papers. For
a beginning undergraduate, they would be part of the same
context, “Information Retrieval Course”.

To determine whether two observations are part of the
same information need, we asked human raters: “Are these
part of the same task or interest?” We pick a random sample
of pairs of observations from a random sample of users, and
the ratings on this sample serve as the ground truth. The
goal of our algorithm is to partition the sequence of obser-
vations into a set of contexts, and we evaluate the precision
and recall of the algorithm against the sampled ratings.

We break the context inference problem into two sub-
problems:

1. Given two candidate contexts, should we merge them
into a single context? We formulated this as supervised
classification, with the additional requirement that the
score returned by the classifier should also serve as a
similarity score (Section 3.2).

2. Using the classifier to make decisions, we wish to seg-
ment the set of input observations into coherent con-
texts (Section 3.5).

This approach is similar to supervised clustering, e.g., [9].
Once we have identified contexts, we add semantic annota-

tions like context types and attribute entities (Section 3.6).

3.2 Classification
Given two contexts C1 and C2, we need a similarity func-

tion that lets us decide whether these two contexts should
be merged into a single context. In addition, we would like
the function to return a score that reflects the degree of
similarity between the contexts.

Compared to prior work, there are three differences in our
similarity computation:

1. Given two contexts with m and n observations respec-
tively, we compute the similarity score in O(m + n)
time, i.e., linear in the size of the contexts. A straight-
forward pair-wise similarity computation would need
O(mn) time, which would be too slow for our applica-
tion.

2. Instead of weighting features by inverse document fre-
quency or inverse query frequency, we weight based on

the probability that two observations with that feature
are merged into the same context (Section 3.3).

3. We incorporate the degree of confidence in a feature
into the similarity calculation (Section 3.4).

3.2.1 Classifier
We use the term feature dimension to denote a set of

homogeneous features, e.g., the set of query words is a fea-
ture dimension, or the set of Freebase entities is a feature
dimension. Each word or entity will then be called a fea-
ture. Similarity metrics such as cosine similarity make sense
within a feature dimension, but not across feature dimen-
sions, as features are not comparable across dimensions.

We use a linear classifier for our similarity function:

Similarity(C1, C2) = w0 +

n∑
i=1

wivi(C1, C2) (1)

where wi is the weight of the ith feature dimension, and
vi(C1, C2) ∈ [−1, 1] is the score (value of the similarity met-
ric) of the ith feature dimension for the contexts C1 and C2.
We consider two contexts to be similar if their similarity
score is greater than zero, hence w0 serves as an (optional)
offset. Given a training dataset consisting of pairs of con-
texts, with the scores of each feature dimension, we use an
off-the-shelf SVM classifier to learn the weights wi.

3.2.2 Feature Dimensions
Figure 1 summarizes the feature dimensions that we used,

along with their similarity metrics. Note that all of these are
applicable to pairs of contexts, not just pairs of observations.

The Location and Temporal dimensions require custom
similarity functions (discussed below). The other feature
dimensions all use one of the following similarity metrics:

• Cosine is the standard cosine similarity, used when the
feature dimension is a weighted vector of features.

• ScaledCosine is a variant of cosine similarity that takes
into account missing features (e.g., some queries or
clicks may not map to any entities), or low confidence
in inferred features. ScaledCosine is discussed in Sec-
tion 3.4.

• MaxFraction computes for each context the fraction of
observations that satisfy some property (e.g., matching
an observation in the other context). It then takes the
maximum of these two fractions as the similarity.

• NormIntersection is a symmetric version of Jaccard
containment [4]. NormIntersection is defined for a pair
of sets A,B as

NormIntersection(A,B) =
|A ∩B|

min (|A|, |B|)

This function does not satisfy NormIntersection(A,B) =
1 ⇒ A = B, but we prefer it to Jaccard similarity as
A ⊆ B ⇒ NormIntersection(A,B) = 1, so we would
merge A,B as expected.

We typically use ScaledCosine for feature dimensions where
we expect missing features or variance in the confidence in
features. For feature dimensions where each feature is ap-
proximately equally predictive of similarity (like query or
URL), we treat the features as a set and use NormIntersec-
tion or MaxFraction for similarity.

Feature Dimension Similarity Function Inputs to the similarity function

QueryWords Cosine Stemmed query words in each context, weighted by frequency and PVFW

QueryRefinements ScaledCosine Stemmed words in the refinements of queries in each context

SameWebResults NormIntersection Set of top 10 web results for the queries in each context

SameQuery NormIntersection Set of queries in each context

Spelling MaxFraction Fraction of queries in C1 that are mis-spellings of queries in C2, and vice versa

SubQuery MaxFraction Fraction of queries in C1 that are sub-queries of queries in C2, and vice versa

ClickWords Cosine Stemmed words in the titles of clicked URL in each context

QueryClickWords Cosine Stemmed query words of C1 with stemmed click title words C2, and vice versa

SameClick NormIntersection Set of clicked URLs in each context

URLDomain ScaledCosine URL domains (for clicks and web results), weighted by frequency and PVFW

ContextType ScaledCosine Context types (see Section 3.6.1) with weights

Category ScaledCosine Categories for each context (using an off-the-shelf classifier), with weights

Forums ScaledCosine Forum results for queries in each context, weighted by frequency

Entity ScaledCosine. Weighted vector of Freebase entities extracted from queries and clicks

Location See Section 3.2.2 Locations referenced in queries and clicks

Session MaxFraction Fraction of queries in C1 in the same session as a query in C2, and vice versa

Temporal See Section 3.2.2 Temporal distance between contexts

Figure 1: Features

Query refinements are other queries that frequently co-
occur with the given query in search sessions of many users.
The other feature dimensions based on queries and clicks are
self-explanatory.

The next two feature dimensions, ContextType and Cate-
gory, map queries and clicks into taxonomies. Category uses
an off-the-shelf classifier with around 1500 categories. How-
ever, there are many cases where observations that map to
different categories would be considered part of the same
context, while observations that map to the same category
would be considered part of different contexts. ContextType
is described in more detail in Section 3.6.1, and has the prop-
erty that if two observations map to different context types,
they will not be considered part of the same context. The
third taxonomy-like feature is Forums, which uses the set
of forums that we get when search results for the query are
restricted to forums. Forums are especially helpful for tail
queries, where they capture fine-grained user interests.

For the Entity feature dimension, we identify and score
freebase entities for each query and URL. We start with
off-the-shelf query-to-entity and document-to-entity extrac-
tors. We then do additional disambiguation by using click
entities (and if present, knowledge panel entities) to disam-
biguate query entities, and query entities to disambiguate
click entities.

For each observation, we normalize the weight of the fea-
tures within a feature dimension to be at most 1 + the num-
ber of clicks. Intuitively, we give the query and each click
equal weight, and an observation that has more clicks has
more weight. We aggregate the features from observations
to contexts using either set union or by adding the feature
vectors. For each feature dimension, we can compute simi-
larity of two contexts with m and n observations respectively
in O(m + n) time.

For Session and Temporal, we compute, for each obser-
vation, the time gap to the closest observation in the other
context in O(m logn + n logm) time. For Session, we then
use the fraction of observations that occur in the same ses-
sion as an observation in the other context. For Temporal,

we compute the average, over all observations, of the number
of days to the closest observation in the other context.

Finally, Location is the only feature where we do use O(mn)
time. We compute the fraction of locations in the context
that are close to some location in the other context. (Com-
puting the average lat-long is not very meaningful, e.g., con-
sider a context whose locations include San Francisco and
California.) Fortunately the number of locations is much
smaller than other features, hence the overall execution time
continues to be linear in the size of contexts.

3.3 Predictive Value Feature Weighting (PVFW)
A standard approach in information retrieval is to weight

features by inverse document frequency or inverse query fre-
quency. We found that such weighting was useful for very
popular words, entities or domains, but not useful beyond
the head. For example, consider the queries “Ecco shoes”
and “Rockport shoes”. “Shoes” is a common word with a
small IDF, while “Ecco” and “Rockport” have large IDFs, so
the cosine similarity of the query words weighted by IDF is
small. However, the word “shoes” is a good indicator that
these queries are part of the same context, so we would like
“shoes” to have the higher weight, not the brands.

In order to accomplish this, we directly measure the pre-
dictive value of a feature. Let Oi, Oj be a random pair of
observations for a random user. Then we define the predic-
tive value weight wf for a feature f as:

wf = Pr(Oi, Oj in same context | Oi, Oj have feature f)

=

∑
u∈U |Pfc(u)|∑
u∈U |Pf (u)|

where U is the set of users, and for a user u, Pf (u) is the
set of all pairs of observations that have the feature f , and
Pfc(u) the set of all pairs of observations that both have
the feature f and are in the same context at the end of
segmentation.

The intuition is similar to co-training [5, 7]: we lever-
age information from all the other features to determine the
usefulness of this feature. There is a circularity here, that

the segmenter uses the classifier that in turn uses the seg-
menter to determine the feature weights. In practice, we
built the initial version of the segmenter without feature
weights. Once we had contexts for all users, we computed
feature weights, re-ran the segmenter, and continue to up-
date the feature weights periodically.

3.4 Incorporating Confidence: ScaledCosine
We motivate ScaledCosine with the following examples:

• When we infer entities from queries or URLs, we of-
ten get entities with low confidence. For the query
“WSDM 2015”, the only entity is “Web Services Dis-
tributed Management”, with low confidence. Simply
computing the cosine similarity between the set of enti-
ties in this query and a different query will not capture
that this is a low confidence inference.

• For a click on a Wikipedia article, the PVFW weight
we compute for the domain wikipedia.org is less than
0.1, i.e., the probability that two wikipedia clicks end
up in the same context is less than 10%. insideevs.com
is however a very specialized website, and gets a score
of 0.83. But a simple cosine similarity cannot distin-
guish between a pair of clicks to wikipedia.org and
a pair of clicks to insideevs.com: both of these pairs
will get a cosine similarity of 1.

Given a pair of contexts, let

• c be the cosine similarity,

• s1 (s2) be the sum of the weights of the features in the
first (second) context, and

• m1 (m2) be the maximum possible value of s1 (s2).

A natural approach would be to try multiplying c by s1
m1
×

s2
m2

, so that the similarity is low when we have less confi-
dence. However, this conflates two very different cases:

• The similarity value is low because the contexts are
very dissimilar.

• The similarity value is low because we do not have
much data for this feature dimension.

Hence we first determine a neutral point t, so that con-
texts with cosine similarity c � t are considered similar,
while contexts with cosine similarity c � t are considered
dissimilar.1 We define ScaledCosine for a feature dimension
as:

ScaledCosine = (c− t)× s1
m1
× s2

m2

Intuitively, if there is no uncertainty or missing features,
s1 ≈ m1, s2 ≈ m2, and the ScaledCosine is simply c − t.
Since the threshold t is offset in the classifier, the ScaledCo-
sine behaves exactly like the cosine similarity.

If there is very little data for one or both contexts, the
ScaledCosine will be close to zero because we scale c− t. If
the contexts are dissimilar and there is sufficient data, the
ScaledCosine will be negative, thus distinguishing the two
cases discussed above.

If there is sufficient data and c ≈ t, the ScaledCosine will
be close to zero. However, conflating this case with that of
missing data is not a problem because, in both cases, there
is no strong signal from this feature dimension as to whether
or not the two contexts should be merged.
1We can determine t by training a SVM for a feature dimen-
sion. Then t = −w0.

1. Initialize each observation as a candidate context.
2. While Similarity(closest pair of candidates) > 0:

a. Merge the two candidate contexts that are most similar.
b. Recompute similarity score between the new context

and all other candidates.

Figure 2: Hierarchical Agglomerative Clustering

1. Initialize each observation as a candidate context.
2. Within each session, use HAC to merge contexts.
3. For threshold ti ∈ [t1, t2, ..., tk]:

a. Find all pairs of candidate contexts that share a feature,
together with a light-weight similarity score.

b. Sort candidate pairs by the light-weight similarity score.
c. For each candidate pair (cp, cq):

If cp was already merged into a context cr, cp := cr.
If cq was already merged into a context cs, cq := cs.
If cp = cq, skip this pair. Else:

Compute Similarity(cp, cq), and merge if score > ti.
If the last N candidate pairs had scores < ti, break.

Figure 3: Near-Linear Agglomerative Clustering
(NLAC)

3.5 Segmentation
Prior work in user modeling used best-link or average-link,

both of which are O(n2), where n is the number of obser-
vations for the user. Conceptually, we would argue that hi-
erarchical agglomerative clustering (HAC) is a good fit, on
the grounds that by merging the most similar contexts first,
we defer the ambiguous cases to when we have more data.
We summarize the HAC algorithm in Figure 2. However,
a straightforward implementation of HAC is O(n2 logn),
which is not scalable when we wish to identify long-term
interests that span months.

We now describe a near-linear approximation to HAC that
gives us similar clustering quality for our domain. The key
insights are to prune the search space, and use lightweight
similarity scores to identify candidate pairs with high simi-
larity. Figure 3 sketches our NLAC algorithm.

• In Step 2, we run HAC on the set of observations in
each search session. Since sessions are typically small
(and we split large sessions), this allows the algorithm
to quickly reduce the number of contexts. While use-
ful, this step is not critical to performance.

• In Step 3a, we compute an approximation to the sim-
ilarity function, similar to canopy clustering [20]. We
build an inverted index over the features, and use that
to compute, in near linear time, all pairs of contexts
that share a feature, as well as a light-weight similarity
score for each pair of contexts. (This is similar to using
LSH [13], except that we hash each feature.) Figure 4
shows the algorithm to compute cosine similarity for
one feature dimension.2 We repeat this algorithm for

2Note that line 6 in Figure 4 can lead to quadratic execution
time for features that occur in many contexts. Hence, we
sample the set of pairs if the list is long. If two contexts are
indeed similar, we expect that some other (more specific)
feature will result in them being added to the candidate
pairs. In addition, even for high-frequency features, the lists
get shorter in later passes as we merge contexts.

For each context ci: (1)
Compute L, the L2-norm for feature dimension F . (2)
For each feature term fj ∈ F with weight wj in ci: (3)

Add (ci, wj/L) to inverted index list for fj . (4)

For each feature term fj ∈ F in the inverted index: (5)
For each pair of values (ck, wk) and (cm, wm): (6)

W (ck, cm) := W (ck, cm) + wkwm (7)

// Now W (ck, cm) = cosine(ck, cm) for feature dimension
// F for every pair of contexts ck, cm.

Figure 4: Computing Candidate Pairs and Cosine
Similarity (for one feature dimension)

each feature dimension, and then, take the weighted
sum of the cosines (Equation 1) to get the light-weight
similarity score.

• Steps 3b and 3c are critical to performance. Sorting
by the light-weight similarity score and using early ter-
mination at the end of step 3c allows us to limit the
number of full similarity computations.

• In Step 3, we set t1 > t2 > ... > tk. The intuition is
that while the lightweight scores serve as a reasonable
proxy for the full score, they do diverge, especially
when cp and cq have been merged into other contexts.
The descending thresholds ti ensure that, like HAC,
we do the high confidence merges first, and defer the
borderline cases. For our dataset, we found that k = 3
gave us the same quality as higher values of k.

3.6 Semantic annotations
Once we have contexts, we annotate them with structured

metadata. We describe some of these annotations here.

3.6.1 Context Types
Context types are a classification of contexts into popular

user information needs at a coarse level, for example, Travel,
Soccer or Health. Context types serve several purposes:

• We prune out contexts that map to types like Health
or other sensitive subjects.

• We identify key attributes based on the context type,
e.g., hotels and attractions for Travel, or teams and
players for Soccer.

• Context types let us customize the experience for spe-
cific types, e.g., travel.

• Context types are also used by the classifier as a signal.

We bootstrap the context type classifier with a set of
hand-built matchers:

• Category nodes from an off-the-shelf classifier with around
1500 categories, for both queries and URLs.

• Types of the freebase entities in the queries and URLs.

• Words in the query or URL title.

• URL patterns.

For popular (head) context types, the above matchers give
us sufficient precision and recall. As we expand the set of
types, we plan to use matchers to bootstrap the classifier,
and use co-training [5, 7] to increase recall.

3.6.2 Attribute Entities
Attributes are freebase types that are especially appro-

priate for a given context type, e.g., for Travel, attributes
include location, hotels and restaurants. Attribute entities
are the entities in the context whose freebase type matches
the attribute.

The primary benefit of using attribute entities rather than
all the entities in the context is that attribute entities are
usually much higher quality. Hence many of the use cases in
Section 5 rely on attribute entities. These entities are also
used in context type classification, e.g., in order to label a
context with context type Books, we require the identifica-
tion of an entity of type author or book title.

3.7 Scaling it up
Even with fast clustering algorithms, deploying a user

modeling system for a personal assistant in production in-
volves significant scaling challenges. The first observation is
that computing features like categories, forums and entities
on-the-fly as we process queries and clicks is prohibitively
expensive. Hence we pre-compute such expensive features
for a few billion frequent clicks and queries, and look these
up at runtime. For tail queries and clicks, we fall back to
cheaper features such as query words and click titles.

Consider a batch implementation that partitions input
data by user and parallelizes computation using Mapreduce
[8]. If we wish to run over a hundred million users, with
around 5 seconds per user (Section 4.3.4), that works out
to 6000 days of CPU time for just segmentation — with-
out counting the load on the back-end for feature lookups.
An obvious optimization is to skip over users with no new
data since the last run. However, active users tend to have
many more observations than inactive users, and hence this
optimization (while helpful) does not result in a huge drop
in computation time. Clearly, any system that relies on re-
peated batch runs will result in large latency between new
observations coming in and user model updates.

We rely on two solutions to scale our system. First, we
have an incremental version of the segmentation algorithm.
Given a new observation, the incremental algorithm uses a
subset of features to pick the top few candidates from among
the existing contexts. The algorithm looks up all the fea-
tures for those contexts, and for any observations in the same
session as the new observation. It then computes the similar-
ity between the current observation and each of the chosen
contexts and observations to determine the best match.3 If
the score for the best match is above the threshold, the ob-
servation is either merged into an existing context, or can
merge with a recent observation to start a new context.

Second, we have built a streaming infrastructure to deter-
mine when to run the incremental update versus rerunning
segmentation on all the user’s data. Given a new obser-
vation, the decision is a function of metadata such as the
number of new input observations, sessions, and time since
the last full model update. This function lets us measure
and tune the trade-off between the slight drop in precision
and recall for the incremental algorithm (compared to the
full version), versus the resource savings.

3While Wang et al. [23] can be considered an incremental
algorithm, the resource savings in our incremental algorithm
come from not having to look up features for all the obser-
vations in the user’s history.

The streaming infrastructure also enforces privacy require-
ments that if a user partially or completely deletes their
data, there is a hard deadline by which the deletes are re-
flected in any contexts inferred for that user.

The result of this architecture is a system that has a soft
deadline of 10 minutes by when a new observation is incorpo-
rated into the user model, and precision and recall very close
to the full segmenter, while requiring dramatically fewer re-
sources.

4. USER MODEL EVALUATION
We first describe how we generated the evaluation dataset.

We then discuss the evaluation methodology, followed by
experimental results.

4.1 Dataset

4.1.1 Can we annotate the complete user history?
In previous work [23, 16], researchers often had human

raters completely annotate search histories for a small num-
ber of users, and used that as training data. There are two
reasons why this was not an option for us.

• Fully annotating the history into contexts is feasible
when the number of queries per user is small (e.g.,
15 queries per user in [23]), or when identifying in-
session tasks (since the number of queries in a session
is small and they are more homogeneous). For our
sample of users, we had an average of 1425 queries per
user. From personal experience trying to do this on
our own search history, fully partitioning thousands of
queries into contexts is next to impossible, especially
since there is often not a single “right” way to partition
queries into contexts, e.g., should San Francisco and
Palo Alto restaurants be in two separate contexts, or
in a single context?

• For privacy reasons, raters are not allowed to see a
user’s full search history. In our evaluation, each rater
saw only a single pair of observations from a user.

Hence, instead of fully annotating the user history, we pick
pairs of observations from a sample of users.

4.1.2 Can we select pairs of observations at random?
We initially tried picking pairs of observations at random

to send to raters, but found that only 1% of the pairs were
positive, 59% were negative, and the raters did not agree
on the remaining 40%. So we instead picked pairs of ob-
servations that shared at least one feature. The implication
is that the true recall may be slightly lower than the recall
on the dataset. However, since a pair of observations with
zero common features are very unlikely to be rated part of
the same context, we do not expect this difference to be
significant.

4.1.3 Can we trust the ratings?
We sent each pair of observations to three raters. Each

rater is asked whether

• the pair of observations is part of the same task, inter-
est or habit (Yes);

• the observations are related, but may not be part of
the same task or interest (Maybe); or

• the observations are not related (No).

We found that when all three raters agreed, the resulting
dataset was very high quality. However, when there was
disagreement, either the example was ambiguous, or (in our
opinion) some of the raters were wrong — and it was not
always the majority that was right. Hence we restricted our
dataset to those pairs where all three raters agreed.

4.1.4 Dataset Description
We picked a random sample of 500 users, biased towards

users with more queries. Users with more queries are much
more likely to see recommendations both because they are
more active and because we have more data to generate
recommendations. Hence skewing towards active users gives
us a more representative sample of our user base.

We picked 50 pairs of observations for each user, over a
period of 6 months, for a total of 25,000 pairs of observations.
We then used the subset of the data where all the raters
unanimously voted either Yes or No: 48.7% of pairs were in
this subset, yielding 12,181 examples. Out of these, 10.5%
were Yes and the remaining 89.5% were No.

4.2 Methodology
The User Modeling algorithm has three key components:

1. The features used to compare pairs of contexts.

2. The classifier that determines whether two contexts
should be merged.

3. The segmentation algorithm which uses the classifier
to identify contexts from the sequence of observations.

The three components are somewhat independent, but not
completely so. In particular, [23] fixed the segmentation al-
gorithm to be BestLink, and used a latent structural SVM
to learn the classifier in order to minimize errors in the final
segmentation. They found that this yielded slightly better
results (3% gain in precision, 2% gain in recall) compared to
learning the classifier over pairs of observations (the“Adapt-
Clu” algorithm in [23]).

Since we do not have fully annotated user histories, we
did not use a latent structural SVM to train the classifier
based on segmentation results. However, we did tune the
precision-recall trade-off of the classifier based on segmenta-
tion results. We found that such tuning captures some of the
gains of training the classifier using segmentation results.

In the rest of this section, we focus on the features and seg-
mentation algorithms. We used an off-the-shelf SVM classi-
fication library [6] for the second component. The first and
third components are agnostic to the choice of classifier, and
using a more sophisticated classifier should help improve the
segmentation quality further.

4.3 Experimental Results
Our primary point of comparison is with Wang et al. [23],

the most recent work on finding cross-session search tasks.
For segmentation algorithms, we also compare against HAC
and canopy clustering [20].

All experiments were run using 10-fold cross-validation for
the classifier, and 5-fold cross-validation for the segmenter.
We measure precision, recall, and F1 (the harmonic mean of
precision and recall).

4.3.1 Predictive Value Feature Weighting and Scaled-
Cosine

To our surprise, Predictive Value Feature Weighting (PVFW)
and ScaledCosine did not matter for the classifier:

Precision Recall F1

Base 0.938 0.862 0.898

PVFW 0.960 0.854 0.904

PVFW+ScaledCosine 0.963 0.830 0.892

However, for the segmenter, PVFW + ScaledCosine does
better than the base algorithm, and the difference is statis-
tically significant.

Precision Recall F1

Base 0.807 0.907 0.854

PVFW 0.844 0.899 0.871

PVFW+ScaledCosine 0.894 0.878 0.886

For the classifier, when looking at a single pair of ob-
servations, the variance in confidence is only across feature
dimensions, e.g., the inferred entities may be low confidence
while the categories are high confidence. For the segmenter,
when looking at a pair of contexts, there is variance in con-
fidence both across feature dimensions and across observa-
tions within a single feature dimension, e.g., within a context
the inferred entities may be high confidence for some obser-
vations and low confidence for other observations. Hence
PVFW+ScaledCosine has much more scope to improve pre-
cision and recall in the segmenter than in the classifier.

4.3.2 Taba vs Wang Features
We also compared our features with those used by Wang

et al. [23]. We found that our features dramatically outper-
formed the Wang features. Combining both set of features
yielded a small improvement over the Taba features.

Features Precision Recall F1

Wang 0.949 0.719 0.818

Taba 0.963 0.830 0.892

Taba+Wang 0.968 0.848 0.904

4.3.3 The Top Feature Dimensions
To determine which feature dimensions were most impor-

tant for the classifier, we used forward selection. We started
with no feature dimensions, and picked the feature dimen-
sion with the highest F1 (Query Words). We then added the
feature dimension that improved F1 the most (Category).
Repeating this process yielded the results below:

Features Precision Recall F1

Query Words 0.940 0.682 0.790

+ Category 0.933 0.792 0.857

+ Entity 0.938 0.802 0.865

+ Forum 0.937 0.810 0.869

Interestingly, the model with just two dimensions (Query
Words and Category) outperforms Wang, even though Wang
has both of these features (and many more). PVFW+Scaled-
Cosine may not matter for classification when we have all
the Taba features (due to redundancy between features), but
does matter when we have only a few features.

4.3.4 NLAC is very fast, and just as accurate.
We compared HAC, NLAC and BestLink, using the Taba

features:

Segmenter Precision Recall F1 Time/User (s)

NLAC 0.894 0.878 0.886 4.26

Canopy 0.896 0.867 0.881 34.97

BestLink 0.901 0.812 0.855 53.58

HAC 0.892 0.879 0.885 122.96

NLAC was 30 times faster than HAC, and around 8 to
12 times faster than BestLink and Canopy clustering [20].
While Canopy and NLAC are motivated by similar intu-
itions, the details matter. Canopy runs HAC within each
canopy. For our dataset, we often have large canopies, and
that slows down the Canopy algorithm. In contrast, NLAC
only re-computes similarity when deciding whether to merge
two candidates, and is thus substantially faster. By making
several passes, starting with a high threshold, NLAC is able
to maintain accuracy while requiring substantially fewer full
similarity computations than Canopy.

With respect to quality, NLAC, HAC and Canopy were
very similar. Since both NLAC and Canopy are approxima-
tions to HAC, this says that both NLAC does not sacrifice
quality for the performance gains. (While NLAC has the
highest F1, the difference from HAC or Canopy is not sta-
tistically significant.) BestLink did worse on F1 than the
other three algorithms, and the difference was statistically
significant.4

We wished to experiment with Wang+BestLink, but found
that it was more than 1000 times slower than Taba+NLAC.
Computing the Wang features for a pair of observations was
more than 100 times slower than computing the Taba fea-
tures, and BestLink computes similarity for many more pairs
than NLAC.5 Hence we were unable to compare the Wang
and Taba features for segmentation.

4.3.5 Context Distributions
Finally, we looked at the distribution of time spans of the

contexts. While this sample is biased towards more active
users, it is still noteworthy that half the queries were in con-
texts that spanned more than a month.

Contexts Queries % of

per User per Context Queries

Multi-query 171 7.5 90

Multi-session 91 11.3 72

Multi-day 75 12.7 67

Span > 1 week 59 14.7 61

Span > 1 month 36 19.7 50

4In our initial set of experiments, where we trained on 60
users and tested on 40 users, the gap between BestLink and
the other algorithms was much larger. This suggests that
BestLink is more sensitive to the amount of training data
and the quality of the classifier.
5The slowest Wang feature is edit distance — for every pair
of observations, we need to compute the minimum and av-
erage edit distance between their sets of web results. For
a user with 2000 queries and 10 web results per query, the
Wang+BestLink algorithm would need to compute the edit
distance between 200 million pairs of URLs.

5. USE CASES IN A PERSONAL ASSISTANT
The primary goal for a personal assistant system is to

determine the most relevant information for a user at a given
point in time. We now describe, by walking through some
real world (deployed) examples, how the user model defined
in Section 3 serves as the foundation for building a personal
assistant. We can group these examples into two classes,
based on the source of the content:

• The content is a feed of public data extrinsic to the
user contexts, and the primary problem is to match
contexts against the content.

• The observations and contexts are the source of the
information, and collaborative filtering is used to gen-
erate recommendations.

5.1 Matching public data feeds against the user
model

This class includes many use cases that are highly rated
by users. Examples include:

• Sports score updates for teams that the user follows.
The content is a licensed third party feed of sports
scores, where the sports teams have been reconciled
against Freebase. The attributes (Section 3.6.2) from
contexts with the appropriate context type tell the per-
sonal assistant which teams the user follows.

• Entity reminders personalized to a user. The entities
are those identified as attributes of the appropriate
type. Examples include reminders when

– an artist a user is interested in is performing nearby,

– a band a user likes releases an album,

– an author a user follows releases a new book.

At first glance, it may appear that we do not need contexts
for these examples: couldn’t we simply count entities refer-
enced in the user’s query stream? While counting entities
will work reasonably well, using contexts can yield signif-
icantly better results. For example, merging queries that
are about different players in a football team together with
queries directly referencing the football team gives a more
accurate estimate of the level of interest in a football team.

The second takeaway is that most of these use cases will
not work if we have only a few days of data. For example,
there is typically a long gap between when the user searches
for an artist and when that artist is performing nearby. Sim-
ilarly, recall for sports teams would be very poor with just
one week of data. Being able to scale context identification
to many months of data is critical for these use cases.

5.2 Collaborative filtering
Matching public data feeds against the user model works

well when such feeds are available. For the huge number of
use cases where there are no public data feeds, the observa-
tions and contexts serve as the source of recommendations.

5.2.1 Interest Updates
We show personalized content recommendations for the

user’s long term interests, using collaborative filtering. Our
system consists of the following components:

• Fresh Aggregates: For each entity (or query) that
occurs in a sufficiently large number of contexts, we
get the set of users who have that entity (query) in
any of their contexts. We then aggregate what those
users have read recently.6 Thus for a given entity, we
have aggregate statistics on what fresh content would
be interesting for users with that entity.

• Context Relevance Score: We use a number of sig-
nals computed from the context to decide whether the
user will be interested in updates for this context. The
signals include a “fresh intent” score (a combination of
how often the user looked at fresh content in this con-
text, and how often other users looked at fresh content
in similar contexts), the recency of the context, and the
temporal distribution of activity in the context. This is
similar in spirit to the work by Agichtein et. al. [3] on
predicting search task continuation. Computing these
signals over the context is more accurate than look-
ing at an entity or query in isolation. For example, a
user may not have looked at a player recently, but if
she has recently looked at articles about the player’s
team, that is indirect evidence of continued interest in
the player.

• Recommendation Ranking: Given a context with
a high context relevance score, we look up the fresh
aggregates for each entity and query in the context.
Each aggregate gives us the articles users interested in
that entity or query have read recently, and combining
these lists gives us a candidate set of recommendations.
These recommendations are filtered for quality, and
then scored for timeliness (to get new content) and
relevance to the context.

5.2.2 Task Recommendations
The goal is to assist users with longer tasks, e.g., trip

planning or buying a camera, by leveraging the experience
of users with similar tasks. The approach is similar to the
system for interest updates, though the details are quite
different:

• We use context aggregates instead of fresh aggre-
gates. For each URL, entity or query that occurs in a
sufficiently large number of contexts, we compute ag-
gregate statistics over the set of contexts in which that
URL (or entity or query) appears. For example, given
an URL, the aggregates tell us what other URLs, en-
tities and queries users looked at later in that context.
We also compute meta-data, such as the fraction of
clicks in those contexts that are on news or videos.

• The context relevance score function is tuned differ-
ently, e.g., with much tighter bounds on how recently
the last activity in that context occurred. For long-
term interests, people are usually interested in fresh
content even without recent activity. However, recom-
mendations for tasks are only useful when the user is
actively involved in the task.

• The scoring functions for recommendations are differ-
ent, e.g., diversity matters more, and freshness matters
less.

6For privacy reasons, the algorithm only retains articles that
have been read by a sufficiently large number of users.

6. CONCLUSION
We presented a user modeling system that, given web

search history for opted-in users, identifies coherent contexts
not just within sessions or over a few days, but across months
of data. Looking at these long time spans allows the system
to identify long-term tasks, interests and habits, in addition
to identifying short-term tasks.

Our work includes three main technical contributions. First,
we showed that intuitions and algorithms that work well
over small time periods often do not scale to large time
spans — this opens up a very interesting (and high impact)
area for future research. Second, we have identified a set of
features that yield much higher precision/recall than prior
work, and whose computation requires only a small frac-
tion of the CPU time (compared to prior work). Finally, we
presented a new segmentation algorithm, NLAC, that uses
indexing and lightweight scoring to provide similar precision
and recall to HAC while being 30 times faster.

The last two contributions were critical, since our user
modeling system is deployed in production for hundreds of
millions of users, as part of Google Now. The contexts iden-
tified by the system are used both for recommending content
from public data feeds, as well as serving as input to a col-
laborative filtering system for generating interest updates
and task recommendations.

There are many promising directions for future work. We
highlight three areas. First, while our set of features out-
perform prior work, we think there is plenty of scope for
doing even better. In particular, it would be interesting to
see if embedding query words (as well as other feature di-
mensions) in a vector space (e.g., [15]) and computing sim-
ilarity between words in that vector space will yield better
results than the bag of words approach. Second, modeling
relationships between contexts (sub-contexts, related con-
texts) will yield a much richer user model. Finally, the in-
cremental version of our algorithm has not yet been able to
match the quality (precision/recall) of the non-incremental
version. Developing an incremental algorithm that yields
similar quality, or even just being able to predict when an in-
cremental algorithm would do poorly, are challenging prob-
lems.

Acknowledgments
We thank Carolyn Au, Aparna Chennapragada, Andrew

Dai, Elena Erbiceanu, Surabhi Gupta, Mahesh Keralapura,
Karthik Lakshminarayanan, Carl Lischeske, David Martin,
Kiran Panesar, Kelvin So, Shen Wang, Chenjun Wu, and
Matt Wytock, who worked with us to design, build and
launch the Taba system. We thank Andrew Kirmse, Baris
Gultekin, Pablo Bellver, German Cheung, Jan-Willem Maarse,
Anand Pillai, Jie Shao, Phil Verghese, Randy Wilson and
Benyu Zhang for their help in launching Taba as part of
Google Now. We thank Anurag Vyas for help in analyzing
the evaluation data.

7. REFERENCES
[1] Google Now, http://www.google.com/landing/now/.

[2] Microsoft Cortana, http://www.windowsphone.com/
en-us/how-to/wp8/cortana/meet-cortana.

[3] E. Agichtein, R. W. White, S. T. Dumais, and P. N.
Bennet. Search, interrupted: Understanding and
predicting search task continuation. In SIGIR, 2012.

[4] P. Agrawal, A. Arasu, and R. Kaushik. On indexing
error-tolerant set containment. In SIGMOD, 2010.

[5] A. Blum and T. Mitchell. Combining labeled and
unlabeled data with co-training. In Proc. of the Conf.
on Computational Learning Theory, 1998.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27,
2011.

[7] M. Collins and Y. Singer. Unsupervised models for
named entity classification. In Joint SIGDAT Conf. on
Empirical Methods in NLP and Very Large Corpora,
1999.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. CACM, 51(1), Jan.
2008.

[9] T. Finley and T. Joachims. Supervised clustering with
support vector machines. In ICML, 2005.

[10] W. Hua, Y. Song, H. Wang, and X. Zhou. Identifying
users’ topical tasks in web search. In WSDM, 2013.

[11] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: A review. ACM Comput. Surv.,
31(3):264–323, Sept. 1999.

[12] R. Jones and K. L. Klinkner. Beyond the session
timeout: Automatic hierarchical segmentation of
search topics in query logs. In CIKM, 2008.

[13] H. Koga, T. Ishibashi, and T. Watanabe. Fast
agglomerative hierarchical clustering algorithm using
locality-sensitive hashing. Knowl. Inf. Syst.,
12(1):25–53, May 2007.

[14] A. Kotov, P. N. Bennett, R. W. White, S. T. Dumais,
and J. Teevan. Modeling and analysis of cross-session
search tasks. In SIGIR, 2011.

[15] Q. V. Le and T. Mikolov. Distributed representations
of sentences and documents. In ICML, 2014.

[16] L. Li, H. Deng, A. Dong, Y. Chang, and H. Zha.
Identifying and labeling search tasks via query-based
Hawkes processes. In SIGKDD, 2014.

[17] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and
G. Tolomei. Identifying task-based sessions in search
engine query logs. In WSDM, 2011.

[18] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and
G. Tolomei. Discovering tasks from search engine
query logs. ACM Trans. Inf. Syst., 31(3), Aug. 2013.

[19] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and
G. Tolomei. Modeling and predicting the task-by-task
behavior of search engine users. In OAIR, 2013.

[20] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In SIGKDD, 2000.

[21] C. Silverstein, H. Marais, M. Henzinger, and
M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33, 1999.

[22] A. Spink, M. Park, B. J. Jansen, and J. Pedersen.
Multitasking during web search sessions. Inf. Process.
Manage., 42(1), Jan. 2006.

[23] H. Wang, Y. Song, M.-W. Chang, X. He, R. W.
White, and W. Chu. Learning to extract cross-session
search tasks. In WWW, 2013.

